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Introduction

• Why removal?

• ’Right to be forgotten’ (California Consumer Privacy Act (CCPA),

Act on the Protection of Personal Information (APPI) etc.)

• Outlier removal.

• Why not retraining? - Expensive! (e.g. several weeks for GPT)

• What has been done? - low dimensional p ≪ n, gradient (GD) or

Hessian (Newton) based methods.
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Existing work focus on low dimensions

• Guo et al. (2019): (ϵ, δ)-Certified Removal, inspired by differential

privacy, randomized estimators

β̂\M and β̃\M indistinguishable in distribution

Theoretical guarantee for one Newton iteration, p ≪ n

• Sekhari et al. (2021): similar as above, adding an ’accuracy’ metric

using excess risk, p ≪ n, one Newton iteration

• Neel et al. (2021); Izzo et al. (2021): gradient descent based, p ≪ n

• Xu et al. (2023): a comprehensive survey

• Our Central Question: Are existing unlearning methods reliable

when n, p → ∞ with n/p → γ0 > 0?
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Our Key Findings

One step of Newton is NOT enough in high dimensions!
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Certifiability and Accuracy



Formal Setup: Proportional High-dimensional R-ERM

• Dataset: D = {(y1, x1), (y2, x2), . . . , (yn, xn)}.

• Model: Regularized-Empirical Risk Minimization (R-ERM)

β̂ = A(D) ≜ argmin
β∈Rp

∑
i≤n

ℓ(yi |x⊤
i β) + λr(β)

• Removal indices: M ⊂ {1, 2, ..., n}, |M| = m (may increase with n)

• Exact removal:

β̂\M = A(D \ DM) = argmin
β∈Rp

∑
i /∈M

ℓ(yi |x⊤
i β) + λr(β);

High dimension

p → ∞, n → ∞, p/n ≡ γ0 constant.
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Certifiability and Accuracy

• Approximate removal:

β̃\M = Ã(β̂,DM, ...)

• Need to add a perturbation b to obscure residual information about

DM (similar to exponential & Gaussian mechanism in DP)

• A good removal: β̃\M + b similar to β̂\M + b
• Certifiability: “Indistinguishability”

(ϕ, ϵ)-Probabilistically-certified Approximate Removal (PAR)

e−ϵ ≤
p(β̃\M + b|D)

p(β̂\M + b|D)
≤ eϵ w .p. ≥ 1− ϕ

• Accuracy: Generalization Error Divergence (GED)

GED := |ℓ(ynew|x⊤
new(β̃\M + b))− ℓ(ynew|x⊤

newβ̂\M)| →p 0

for a new observation (ynew, xnew).
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Main Theoretical Results: One

Newton Step Not Enough



Newton Method + Laplacian Perturbation

• Newton Method: initialize at β̃
(0)
\M = β̂.

β̃
(T )
\M = β̃

(t−1)
\M −

(
∇2L\M

(
β̃
(t−1)
\M

))−1

∇L\M
(
β̃
(t−1)
\M

)
◦ L\M: objective function for β̂\M

• Then add Isotropic Laplacian noise to ensure certifiability:

β̃
(T )
\M + b, with p(b) ∝ exp

(
− ϵ

rt,n
∥b∥
)
.
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L2 error of Newton estimator

Lemma

Fix any number of Newton steps T ≥ 1, ϵ > 0, m = o(n1/3):

max
t≤T

||β̃(T )
\M − β̂\M||2 = Op

((
m3

n

)2T−2

polylog(n)

)

Main Assumptions:

• L is strongly-convex

• Smoothness, Gaussian design X , ℓ, r and their derivatives have

polynomial growth, bounded SNR.
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Main Theorem: Certifiability and Accuracy

Theorem

For any fixed number of Newton steps t ≥ 1, if p(b) ∝ e
− ϵ

rt,n
||b||

with

rt,n ≃
(
m3

n

)2t−2

polylog(n),

and |M| = m = o(n1/3): then under high dimensions (p ∝ n):

• Certifiability: β̃
(T )
\M + b achieves (ϕn, ϵ)-PAR with ϕn → 0.

• Accuracy:

GED = Op(

√
mp

ϵ
rt,npolylog(n))
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Implications and comparisons

• We need T to satisfy

T ≥ 1 + log2

(
α+ 1

1− 3α

)
where α := log(m)/ log(n) < 1

3

• In low dimensions, t = 1 Newton step suffices

• However, under high dimensions (when p ∝ n) even for m = 1 a

single step leads to too high a noise level, but two steps are enough.
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Numerical Experiments



One step is not enough in high dimensions

Numerical Experiment:

• Logistic + Ridge model, m = 1

• Plot ℓ(yi |x⊤
i (β̃

(t)
\i + b)) against ℓ(yi |x⊤

i β̂\i )

• Left: one step Newton. Right: two steps.
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Conclusions and Future Work

• We propose a certifiable data removal (machine unlearning)

framework (certifiability and accuracy) that is suitable for

high-dimensional settings.

• The proposed perturbation–based Newton method requires more

than one update step to be both certified and accurate.

• Theoretical analysis under high dimensions and numerical

experiments support the need for multiple Newton steps.

• Future work: extensions to non-smooth models, alternative forms of

perturbation, gradient descent, efficient sequential removal, etc.
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