Approximate Machine Unlearning for High Dimensional R-ERM

Joint work with Arnab Auddy, Kamiar Rahnama Rad, Arian Maleki and Yongchan Kwon

Speaker: Haolin Zou

May 9, 2025

Columbia University

Table of contents

1. Motivation and Backgrounds

2. High Dimensional R-ERM, Certifiability and Accuracy

3. Main Theoretical Results: One Newton Step Not Enough

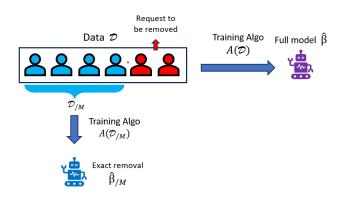
4. Numerical Experiments

Motivation and Backgrounds

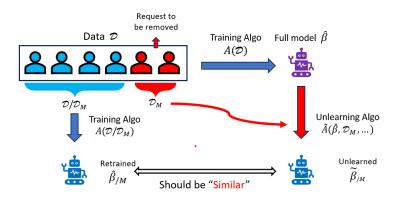
Consider a learning model:

Consider a learning model:

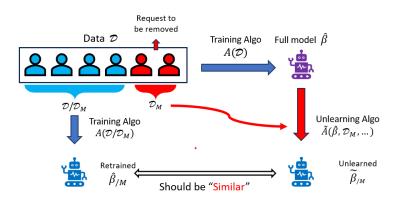
Now suppose a group of users request their data to be removed:



Now suppose a group of users request their data to be removed:



Now suppose a group of users request their data to be removed:



Question: What is being "similar"?

Introduction

- Why removal?
 - 'Right to be forgotten' (California Consumer Privacy Act (CCPA), Act on the Protection of Personal Information (APPI) etc.)
 - Outlier removal.

Introduction

- Why removal?
 - 'Right to be forgotten' (California Consumer Privacy Act (CCPA), Act on the Protection of Personal Information (APPI) etc.)
 - Outlier removal.
- Why not retraining? Expensive! (e.g. several weeks for GPT)

Introduction

- Why removal?
 - 'Right to be forgotten' (California Consumer Privacy Act (CCPA), Act on the Protection of Personal Information (APPI) etc.)
 - Outlier removal.
- Why not retraining? Expensive! (e.g. several weeks for GPT)
- What has been done? low dimensional $p \ll n$, gradient (GD) or Hessian (Newton) based methods.

• Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators**

• Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution

• Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution Theoretical guarantee for one Newton iteration, $p \ll n$

- Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution Theoretical guarantee for one Newton iteration, $p \ll n$
- Sekhari et al. (2021): similar as above, adding an 'accuracy' metric using excess risk, $p \ll n$, one Newton iteration

- Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution Theoretical guarantee for one Newton iteration, $p \ll n$
- Sekhari et al. (2021): similar as above, adding an 'accuracy' metric using excess risk, $p \ll n$, one Newton iteration
- Neel et al. (2021); Izzo et al. (2021): gradient descent based, $p \ll n$

- Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution Theoretical guarantee for one Newton iteration, $p \ll n$
- Sekhari et al. (2021): similar as above, adding an 'accuracy' metric using excess risk, $p \ll n$, one Newton iteration
- Neel et al. (2021); Izzo et al. (2021): gradient descent based, $p \ll n$
- Xu et al. (2023): a comprehensive survey

- Guo et al. (2019): (ϵ, δ) -Certified Removal, inspired by differential privacy, **randomized estimators** $\hat{\beta}_{\backslash \mathcal{M}}$ and $\tilde{\beta}_{\backslash \mathcal{M}}$ indistinguishable in distribution Theoretical guarantee for one Newton iteration, $p \ll n$
- Sekhari et al. (2021): similar as above, adding an 'accuracy' metric using excess risk, $p \ll n$, one Newton iteration
- Neel et al. (2021); Izzo et al. (2021): gradient descent based, $p \ll n$
- Xu et al. (2023): a comprehensive survey
- Our Central Question: Are existing unlearning methods reliable when $n, p \to \infty$ with $n/p \to \gamma_0 > 0$?

Our Key Findings

One step of Newton is **NOT** enough in high dimensions!

High Dimensional R-ERM,

Certifiability and Accuracy

• Dataset: $\mathcal{D} = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), \dots, (y_n, \mathbf{x}_n)\}.$

- Dataset: $\mathcal{D} = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), \dots, (y_n, \mathbf{x}_n)\}.$
- Model: Regularized-Empirical Risk Minimization (R-ERM)

$$\hat{\boldsymbol{\beta}} = A(\mathcal{D}) \triangleq \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i \leq n} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta})$$

- Dataset: $\mathcal{D} = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), \dots, (y_n, \mathbf{x}_n)\}.$
- Model: Regularized-Empirical Risk Minimization (R-ERM)

$$\hat{\boldsymbol{\beta}} = A(\mathcal{D}) \triangleq \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i < n} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta})$$

• Removal indices: $\mathcal{M} \subset \{1,2,...,n\}$, $|\mathcal{M}| = m$ (may increase with n)

- Dataset: $\mathcal{D} = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), \dots, (y_n, \mathbf{x}_n)\}.$
- Model: Regularized-Empirical Risk Minimization (R-ERM)

$$\hat{\boldsymbol{\beta}} = A(\mathcal{D}) \triangleq \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i \leq n} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta})$$

- Removal indices: $\mathcal{M} \subset \{1, 2, ..., n\}$, $|\mathcal{M}| = m$ (may increase with n)
- Exact removal:

$$\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} = A(\mathcal{D} \setminus \mathcal{D}_{\mathcal{M}}) = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i \notin \mathcal{M}} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta});$$

- Dataset: $\mathcal{D} = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), \dots, (y_n, \mathbf{x}_n)\}.$
- Model: Regularized-Empirical Risk Minimization (R-ERM)

$$\hat{\boldsymbol{\beta}} = A(\mathcal{D}) \triangleq \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i \leq n} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta})$$

- Removal indices: $\mathcal{M} \subset \{1, 2, ..., n\}$, $|\mathcal{M}| = m$ (may increase with n)
- Exact removal:

$$\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} = A(\mathcal{D} \setminus \mathcal{D}_{\mathcal{M}}) = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i \notin \mathcal{M}} \ell(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) + \lambda r(\boldsymbol{\beta});$$

High dimension

$$p \to \infty, n \to \infty, p/n \equiv \gamma_0$$
 constant.

Approximate removal:

$$ilde{oldsymbol{eta}}_{ackslash\mathcal{M}} = ilde{oldsymbol{A}}(\hat{oldsymbol{eta}}, \mathcal{D}_{\mathcal{M}}, ...)$$

• Need to add a perturbation \boldsymbol{b} to obscure residual information about $\mathcal{D}_{\mathcal{M}}$ (similar to exponential & Gaussian mechanism in DP)

Approximate removal:

$$ilde{oldsymbol{eta}}_{ackslash\mathcal{M}} = ilde{oldsymbol{A}}(\hat{oldsymbol{eta}}, \mathcal{D}_{\mathcal{M}}, ...)$$

- Need to add a perturbation \boldsymbol{b} to obscure residual information about $\mathcal{D}_{\mathcal{M}}$ (similar to exponential & Gaussian mechanism in DP)
- A good removal: $\tilde{m{eta}}_{ackslash\mathcal{M}} + m{b}$ similar to $\hat{m{eta}}_{ackslash\mathcal{M}} + m{b}$

Approximate removal:

$$ilde{oldsymbol{eta}}_{ackslash\mathcal{M}} = ilde{oldsymbol{A}}(\hat{oldsymbol{eta}}, \mathcal{D}_{\mathcal{M}}, ...)$$

- Need to add a perturbation \boldsymbol{b} to obscure residual information about $\mathcal{D}_{\mathcal{M}}$ (similar to exponential & Gaussian mechanism in DP)
- ullet A good removal: $oldsymbol{ ilde{eta}}_{ackslash\mathcal{M}}+oldsymbol{b}$ similar to $oldsymbol{\hat{eta}}_{ackslash\mathcal{M}}+oldsymbol{b}$
 - **Certifiability:** "Indistinguishability" (ϕ, ϵ) -Probabilistically-certified Approximate Removal (PAR)

$$e^{-\epsilon} \le \frac{p(\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}|\mathcal{D})}{p(\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}|\mathcal{D})} \le e^{\epsilon} \quad w.p. \ge 1 - \phi$$

Approximate removal:

$$ilde{oldsymbol{eta}}_{ackslash\mathcal{M}} = ilde{oldsymbol{A}}(\hat{oldsymbol{eta}}, \mathcal{D}_{\mathcal{M}}, ...)$$

- Need to add a perturbation \boldsymbol{b} to obscure residual information about $\mathcal{D}_{\mathcal{M}}$ (similar to exponential & Gaussian mechanism in DP)
- A good removal: $\tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}$ similar to $\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}$
 - Certifiability: "Indistinguishability" (ϕ, ϵ) -Probabilistically-certified Approximate Removal (PAR)

$$e^{-\epsilon} \le \frac{p(\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}|\mathcal{D})}{p(\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b}|\mathcal{D})} \le e^{\epsilon} \quad w.p. \ge 1 - \phi$$

• Accuracy: Generalization Error Divergence (GED)

$$\text{GED} := |\ell(y_{\text{new}}|\boldsymbol{x}_{\text{new}}^{\top}(\boldsymbol{\tilde{\beta}}_{\backslash \mathcal{M}} + \boldsymbol{b})) - \ell(y_{\text{new}}|\boldsymbol{x}_{\text{new}}^{\top}\boldsymbol{\hat{\beta}}_{\backslash \mathcal{M}})| \rightarrow_{\rho} 0$$

for a new observation $(y_{\text{new}}, x_{\text{new}})$.

Main Theoretical Results: One

Newton Step Not Enough

Newton Method + Laplacian Perturbation

• Newton Method: initialize at $\tilde{\beta}^{(0)}_{\backslash \mathcal{M}} = \hat{\beta}$.

$$\tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}}^{(T)} = \tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}}^{(t-1)} - \left(\nabla^2 \boldsymbol{L}_{\backslash \mathcal{M}} \big(\tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}}^{(t-1)}\big)\right)^{-1} \nabla \boldsymbol{L}_{\backslash \mathcal{M}} \big(\tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}}^{(t-1)}\big)$$

- \circ $L_{\backslash \mathcal{M}}$: objective function for $\hat{\boldsymbol{\beta}}_{\backslash \mathcal{M}}$
- Then add Isotropic Laplacian noise to ensure certifiability:

$$\tilde{\boldsymbol{\beta}}_{\backslash \mathcal{M}}^{(T)} + \mathbf{b}$$
, with $p(\mathbf{b}) \propto \exp\Big(-\frac{\epsilon}{r_{t,n}} \|\mathbf{b}\|\Big)$.

L2 error of Newton estimator

Lemma

Fix any number of Newton steps $T \ge 1$, $\epsilon > 0$, $m = o(n^{1/3})$:

$$\max_{t \leq T} ||\tilde{\beta}_{\backslash \mathcal{M}}^{(T)} - \hat{\beta}_{\backslash \mathcal{M}}||_2 = O_{\rho}\left(\left(\frac{m^3}{n}\right)^{2^{T-2}} \operatorname{polylog}(n)\right)$$

L2 error of Newton estimator

Lemma

Fix any number of Newton steps $T \ge 1$, $\epsilon > 0$, $m = o(n^{1/3})$:

$$\max_{t \leq T} ||\tilde{\beta}_{\backslash \mathcal{M}}^{(T)} - \hat{\beta}_{\backslash \mathcal{M}}||_2 = O_{\rho}\left(\left(\frac{m^3}{n}\right)^{2^{1-2}} \operatorname{polylog}(n)\right)$$

Main Assumptions:

- L is strongly-convex
- Smoothness, Gaussian design X, ℓ , r and their derivatives have polynomial growth, bounded SNR.

Main Theorem: Certifiability and Accuracy

Theorem

For any fixed number of Newton steps $t \ge 1$, if $p(\boldsymbol{b}) \propto e^{-\frac{\epsilon}{r_{t,n}}||\boldsymbol{b}||}$ with

$$r_{t,n} \simeq \left(\frac{m^3}{n}\right)^{2^{t-2}} \operatorname{polylog}(n),$$

and $|\mathcal{M}| = m = o(n^{1/3})$: then under high dimensions $(p \propto n)$:

- Certifiability: $\tilde{\boldsymbol{\beta}}_{NM}^{(T)} + \boldsymbol{b}$ achieves (ϕ_n, ϵ) -PAR with $\phi_n \to 0$.
- Accuracy:

$$GED = O_p(\frac{\sqrt{mp}}{\epsilon}r_{t,n}\operatorname{polylog}(n))$$

Implications and comparisons

We need T to satisfy

$$T \ge 1 + \log_2\left(\frac{\alpha + 1}{1 - 3\alpha}\right)$$

where
$$\alpha := \log(m)/\log(n) < \frac{1}{3}$$

- In low dimensions, t = 1 Newton step suffices
- However, under high dimensions (when $p \propto n$) even for m=1 a single step leads to too high a noise level, but two steps are enough.

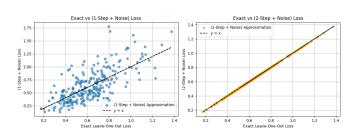
Numerical Experiments

One step is not enough in high dimensions

Numerical Experiment:

- Logistic + Ridge model, m = 1
- Plot $\ell(y_i|\mathbf{x}_i^{\top}(\tilde{\boldsymbol{\beta}}_{\backslash i}^{(t)}+\boldsymbol{b}))$ against $\ell(y_i|\mathbf{x}_i^{\top}\hat{\boldsymbol{\beta}}_{\backslash i})$
- Left: one step Newton. Right: two steps.

$$n = 250$$
, $p = 500$, $df/p = 0.13$, $\lambda = 1$



Conclusions and Future Work

- We propose a certifiable data removal (machine unlearning) framework (certifiability and accuracy) that is suitable for high-dimensional settings.
- The proposed perturbation—based Newton method requires more than one update step to be both certified and accurate.
- Theoretical analysis under high dimensions and numerical experiments support the need for multiple Newton steps.
- Future work: extensions to non-smooth models, alternative forms of perturbation, gradient descent, efficient sequential removal, etc.

References i

References

- C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten. Certified data removal from machine learning models. *arXiv preprint* arXiv:1911.03030, 2019.
- Z. Izzo, M. Anne Smart, K. Chaudhuri, and J. Zou. Approximate data deletion from machine learning models. In A. Banerjee and K. Fukumizu, editors, *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pages 2008–2016. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/izzo21a.html.

References ii

- S. Neel, A. Roth, and S. Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for machine unlearning. In *Algorithmic Learning Theory*, pages 931–962. PMLR, 2021.
- A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Processing Systems*, 34:18075–18086, 2021.
- H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu. Machine unlearning: A survey. ACM Comput. Surv., 56(1), Aug. 2023. ISSN 0360-0300. doi: 10.1145/3603620. URL https://doi.org/10.1145/3603620.